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Abstract. Quantum inverse methods are developed for the exact solution of models which
describeN two-level atoms interacting with one mode of the quantized electromagnetic field
containing an arbitrary number of excitationsM. Either a Kerr-type nonlinearity or a Stark-shift
term can be included in the model, and it is shown that these two cases can be mapped from
one to the other. The method of solution provides a general framework within which many
related problems can similarly be solved. Explicit formulae are given for the Rabi splitting of
the models for someN and M, on- and off-resonance. It is also shown that the solution of
the pure Tavis–Cummings model can be reduced to solving a homogeneous ordinary differential
equation of second order. Generalization of the method to the case of several cavity modes is
indicated.

Much attention in quantum optics has been focussed on the Jaynes–Cummings (JC) model
[1, 2] of one two-level atom coupled to a single mode of the quantized electromagnetic field
in an ideal cavity. The JC model is an intrinsically nonlinear model. It is exactly solvable
and, remarkably, has a physical realization in the one85Rb atom micromaser [3] and in the
one138Ba atom microlaser [4]. The same model can also be realized [5] with spin polarized
neutrons in a classical magnetic field.

In the case of the micromaser, the JC model is capable of correctly describing such
features as Rabi oscillations, and such purely quantum phenomena as collapses and revivals
of the atomic inversion, sub-Poissonian photon statistics and squeezing of the cavity field. If
the cavity is not ideal because the cavity mode is coupled to a Kerr-like medium, an effective
Hamiltonian can be derived [6] which adds a fourth-order term in the boson operators to
the simple JC Hamiltonian. This model can also be solved exactly. Another effect which
has been considered in this case of the micromaser is the Stark shift of the atomic levels,
an effect caused by other (non-resonant) excitation levels of the atom [7].

It has been suggested (see the reference in [2]) that, in the inevitable presence of even
a very small amount of black body radiation, the much sought after evolutions of the cavity
field in the micromaser to a pure Fock state, a number state|n〉 of n photons in the field,
would be enhanced by increasing the repetition rate of the input of atoms. However, this
enhanced rate would substantially increase the probability of finding two or more atoms
in the cavity at the same time [8]. This raises the question of the exact solution of the
N two-level atom, one mode problem in an ideal cavity whenN > 1. This model was
solved at exact resonance by Tavis and Cummings [9], and at off-resonance by Hepp and
Lieb [10]. Despite the recent [11] interest in this model, the solution of the general case
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with either the Kerr nonlinearity term or the Stark shift term included in the Hamiltonian
is still lacking.

In this paper we report exact solution of theN two-level atom, one cavity-mode problem
in an ideal cavity for an arbitrary number of excitationsM in the system. It is evident that
with this solution it is possible to describe experimental situations in much greater generality
than has been achieved before. We can also include in ourN -atom model either the Kerr
nonlinearity or the Stark shift term. In fact, we shall show below that, within a constant,
these two cases lead to identical results in each sector of the Hilbert space labelled by the
number of excitationsM and the ‘Dicke cooperation number’S 6 N/2 [12] introduced
below.

The solution reported here is found by applications of the quantum inverse method
(QIM) [13, 14] developed first of all for integrable quantum field theories. These
applications involve some extension of the conventional QIM and one purpose of this
paper is to report this new analysis. One feature of it is the multiple numberK > 1 of
sets of solutions of the Bethe equations involved. Another is that the solution of the Tavis–
Cummings (TC) model found by these methods will be shown to be equivalent to solving
a homogeneous ordinary differential equation of second order. As for the quantum optics,
we have successfully applied the QIM more conventionally to thequantumMaxwell–Bloch
system [15], and there seems to be considerable scope for applying these various techniques
to other models of significance in this field.

The most general Hamiltonian we consider in this paper is

H = h0 + g(a†S− + aS+) + γ a†a†aa + γ (Sz)2 (1)

with h0 ≡ ωa†a + ω0S
z, and we solve it exactly up to determination of the roots of certain

polynomials. InH, g andγ are coupling constants, andS± = ∑N
n=1 σ±

n , Sz = 1
2

∑N
n=1 σ z

n

are collectiveN -atom Dicke operators (spin operators for which total spinS 6 N/2)
satisfying thesu(2) Lie algebra [S+, S−] = 2Sz, [Sz, S±] = ±S±. As usual [a, a†] = 1 for
the single mode. Whenγ = 0, H reduces to the TC model and this becomes the JC model
for N = 1 ( S = 1

2). WhenS = 1
2, (Sz)2 = 1 andH with γ 6= 0 is the JC model with Kerr

nonlinearity.
The number operator

M ≡ Sz + a†a (2)

commutes withH : [H, M] = 0. We can therefore setH0 = g−1(H + (γ −ω)M − γ M2) and
[H, H0] = 0. We can then write

H0 = 1Sz + (a†S− + aS+) + ca†aSz (3)

wherec = −2g−1γ and 1 = g−1(δω + γ ), with δω = ω0 − ω, is the frequency shifted
detuning. Note that the last term on the right-hand side of (3) causes photon number
dependent changes in the atomic transitions and describes therefore a Stark shift. Henceforth
we shall considerH0 and give its exact solution, but the same results can immediately be
extended to the model with Kerr nonlinearity, Hamiltonian (1), through the mapping given
above.

The total spin operator of the model is given by the Casimir operatorS2 = S+S− +
Sz(Sz − 1): [S2, H0] = 0. Since [M, H0] = [S2, H0] = 0, it is convenient (cf the
corresponding analysis of the TC model in [9, 10]) to decompose the Hilbert space of the
model,HN = HB ⊗C2

1 ⊗· · ·⊗C2
N , in terms of the irreducible representations ofsu(2) with
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spin S and the excitation numbersM: HN = ⊕N/2
S>0Y (N, S) ⊕∞

M=0 H(N, S, M − S). Here
Y (N, S) = N !(2S + 1){( 1

2N + S + 1)!( 1
2N − S)!}−1 is the degeneracy of the representation

DS in the reduction of(D 1
2
)N andS is the ‘Dicke cooperation number’ as mentioned above.

We thus have to solve the three simultaneous eigenvalue problems:

H0|8σ
S,M〉 = E0

S,M,σ |8σ
S,M〉

S2|8σ
S,M〉 = S(S + 1)|8σ

S,M〉

M|8σ
S,M〉 = (M − S)|8σ

S,M〉

(4)

where 06 S 6 N/2 and 06 M < ∞. Note that the quantum numbersM as defined in (4)
are integers and in factM is the number of excitations in the system; theσ are positive
integers (see below). In the traditional approach [9] to the solution of the TC model it has
been usual to look for the|8σ

S,M〉 in the form

|8σ
S,M〉 =

J∑
m=0

AM
S,m,σ (S+)m(a†)M−m|�S〉 (5)

with J = min(2S, M). The vacuum state is|�S〉 = |0〉|S, −S〉; a|0〉 = 0; S−|S, −S〉 = 0,
with S2|S, −S〉 = S(S+1)|S, −S〉. The collective Dicke states generated from and including
|S, −S〉 are the|S, m〉 for which Sz|S, m〉 = m|S, m〉, −S 6 m 6S. Note that in general
there are several vacua for each 06 S 6 N/2 and the number of these is calculated
in [12]. In equations (4), (5) the additional labelσ = 1, 2, . . . , K, K = min(2S, M) + 1,
is introduced [9], since the|8σ

S,M〉 are simultaneous eigenstates of the three commuting
operators: then theAM

S,m,σ are coefficients to be determined. In effect equation (5) forms
the ‘dressed-state’ basis [16] for fixedS, M; theσ label the energy splittings. In the dressed-
state basis the rank of the HamiltonianH0 is K. We show that in the application of the QIM
these labelsσ define theK different sets of solutions of the Bethe equations (10) below.

In contrast to the traditional approach which is based on employing the ansatz (5), we
shall use the QIM, which is an algebraic method such that the solution of the problem
is intimately connected with the construction of a Hamiltonian. This method is often
advantageous, because at the same time it provides the solution of a whole family of related
problems. For reasons which will become apparent later we can apply what is already [13]
a relatively new form of the QIM to the problem with the HamiltonianH0 and number
operatorM by considering the two 2× 2 matrix operatorsLB(λ), LS(λ) for bosons and
spins respectively [13]

LB(λ) =
(

λ − 1 − c−1 − ca†a a†

a −c−1

)
LS(λ) =

(
λ − cSz cS+

cS− λ + cSz

)
(6)

in which λ is a complex number. Note that theelementsof LB(λ) each commute with each
of the elements ofLS(λ). For the QIM we need themonodromy matrix[13] T(λ) and for
this object we can now set

T(λ) = LB(λ)LS(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
(7)

so that A(λ) = (λ − 1 − c−1 − ca†a)(λ − cSz) + cS−a†; B(λ) = λX − Y with
X = a†+cS+, Y = (1+c1)S+−ca†Sz+c2a†aS+ and [X, Y] = 0; C(λ) = −S−+a(λ−cSz);
andD(λ) = caS+ − c−1(λ + cSz).
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The significant operator is the traceτ(λ) ≡ Tr T(λ) of the monodromy matrixT(λ):
τ(λ) ≡ A(λ) + D(λ). In the QIM the operatorsτ(λ), ln τ(λ) are always generators of
integrable (solvable) Hamiltonian operators. As can be checkedτ(λ) determinesH0 andM
asH0 = c−1τ(0); M = −c−1(∂τ (λ)/∂λ)λ=0 − c−11 − 2c−2, while the Casimir operatorS2

is expressed through the quantum determinant [13] ofT(λ) asS2 = Dq(0) = Detq T (0) =
T (0)σ 2T t(−c)σ 2. Hereσ 2 is a Pauli matrix andT t means the transpose ofT .

Note that, sinceDq(0) commutes withτ(λ), [S2, τ (λ)] = 0. The operatorsτ(λ) satisfy
[τ(λ), τ (µ)] = 0 for arbitrary complex numbersλ, µ, and henceτ(λ) commutes withH0

and with M, and the three (sets of) operators mutually commute. Then the eigenstates of
τ(λ) are simultaneous eigenstates ofH0 andM and in principle yield the eigenvalues ofH0

andM. The proof of the commutativity of the operatorsτ(λ) is based on the Yang–Baxter
relationR(λ, µ)T(λ) ⊗ T(µ) = T(µ) ⊗ T(λ)R(λ, µ), whereR(λ, µ) = cI + (λ − µ)P, and
P is the permutation operator inC2 ⊗ C2 (R is the so-called rationalR-matrix); I is a unit
matrix.

It can be shown thatMB(λ) = B(λ)(M + 1), and likewiseS2B(λ) = B(λ)S2. So
as is already evidentB(λ) acts as acreation operator for the quasi-particles of the theory
while C(λ) is an annihilation operator. TheM-particle states constructed in the usual
fashion for the QIM method such that|8σ

S,M(λσ
1 , λσ

2 , . . . , λσ
M)〉 = ∏M

j=1 B(λσ
j )|�S〉 =∏M

j=1(λ
σ
j X − Y)|�S〉, are eigenstates ofτ(λ). These eigenstates are symmetric functions

of their argumentsλσ
j . Using A(λ)|�S〉 = (λ − 1 − c−1)(λ + cS)|�S〉, D(λ)|�S〉 =

−c−1(λ − cS)|�S〉, it can further be shown that theλσ
j are in fact the roots of the so-

called ‘Bethe equations’ which here take the form, forn = 1, 2, . . . , M,

(1 + 1c − cλσ
n )

λσ
n + cS

λσ
n − cS

=
M∏

j 6=n

λσ
n − λσ

j + c

λσ
n − λσ

j − c
(8)

in which 0 6 S 6 N/2. Evidently there areK (modulo the permutation group) sets of
solutions of theseM Bethe equations the sets being labelled byσ , a new feature in the
applications of the QIM as was already indicated. ForM = 1 andM = 2 (at 1 = 0) at
least these equations can rather easily be solved analytically. ForM > 2 we have solved
them numerically for a few values ofM, but these solutions will be reported elsewhere.

This way we can find theM-particle eigenenergiesE0
S,M,σ : H0|8σ

S,M〉 = E0
S,M,σ |8σ

S,M〉
and

E0
S,M,σ = S

c

M∏
j=1

(
1 − c

λσ
j

)
−

(
S1 + S

c

) M∏
j=1

(
1 + c

λσ
j

)
(9)

which together are theK eigenvalues of the Hamiltonian with Stark shift (3). From
theseE0

S,M,σ (1, c) we can then find, throughc = −2g−1γ , 1 = g−1(δω + γ ), the K

eigenvaluesES,M,σ = gE0
S,M,σ −(γ −ω)(M −S)+γ (M −S)2 of the Hamiltonian with Kerr

nonlinearity (1). We have thus completely solved the eigenvalue problems of Hamiltonians
(1) and (3) up to the solutionsλσ

j of the Bethe equations (8) for eachσ .
The TC model is obtained from (1) byγ → 0. In this limit (c → 0) from the terms

linear in c the Bethe equations (8) become

2S

λσ
n

− λσ
n + 1 −

M∑
j=1

2

λσ
n − λσ

j

= 0 (10)
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and we must continue to distinguishK sets of solutions: σ = 1, 2, . . ., K. The K

M-photon eigenenergies given by the solutionsλσ
j of (10) are E0

S,M,σ (1, c = 0) =
1(M − S) − ∑M

j=1 λσ
j , so that theES,M,σ for the TC model are given byETC

S,M,σ =
ω(M − S) + gE0

S,M,σ (1 = g−1δω, c = 0). Note that the energy eigenvalues are given
for each model forarbitrary integer valuesof the parametersM > 0 andN > 0.

As far as the physics goes as a particular consequence of these results the ‘vacuum field
Rabi splitting’ [17], given byM = 1 photons for any number of atomsN > 1, is found
from (9) in the form

δES = 2g
[
2S + (2g)−2(δω + γ − 2γ S)2

] 1
2 (11a)

for the Kerr-nonlinearity Hamiltonian (1), and in the form

δES = 2
[
2S + 1

4(1 + cS)2
] 1

2 (11b)

for the Stark-shift Hamiltonian (3). It is evident from equations (11a), (11b) that for finite
detuning both the Stark shift and the Kerr nonlinearity give a noticeable effect only for
rather more than one atom in the cavity. Here the quantum numberS > 0 can have any
valueS 6 N/2 at unit intervals. For each number of atomsN > 1 there is therefore a series
of Rabi shifts and splittings. The maximum Rabi splitting at exact resonance (ω0 = ω) and
for negligible Kerr nonlinearity (γ = 0) is therefore 2gN1/2, a result which is actually
observed in [17]. In these experiments the initial state of the atoms in the cavity is such
that only theS = N/2 states can be realized [18]. The energies of theM > 1 states can be
calculated from (9) with (8) as easily as could theM = 1 states with splittings (11a), (11b).
In particular, forM = 2 andγ → 0, the Bethe equation (10) is very easily solved at exact
resonance (δω = 0); for 2S = N > 1 the energy levelsE0

S,2,σ haveK = 3 and form the
triplet 2ω0; 2ω0 ± 2g(N − 1

2)1/2, while for M = 1 the doublet has energiesω0 ± gN1/2.
These results agree with those found by the traditional method for the TC model, namely
that of [19] for M = 2 and that of [20] forM = 1.

We have shown [21] that the method of observation used in the experiments [17, 18],
which uses the atoms as their own detectors via a weak RF probe, in effect measures
the fluorescence spectrum. From the dipole matrix elements〈8σ

S,M ′ |S+ + S−|8σ
S,M〉, the

numberM can only change by unity, so, forN > 1, there are six possible transitions
for M = 1 → M = 2 and six peaks atω0 ± gN1/2 and ω0 ∓ gN1/2 ± 2g(N − 1

2)1/2

superimposed on the doublet (forM = 0 → M = 1) at ω0 ± gN1/2. Of these six peaks,
four either lie on the doublet or inside it and, for finite peak widths, raise the observed
minimum between the doublet peaks. The remaining two peaks form symmetrically placed
sidebands atω0 ± (gN1/2 + 2g(N − 1

2)1/2).
In the experiments [17]N > 1 andN = 3 andN = 6 in particular: ForN = 3 we find

the peak atω0 + g(
√

3 + √
10) agrees in position with that observed in [17] for values of

g corresponding to the observed doublet separation. ForN = 3 andM > 2, K = 3 and
only triplets occur; e.g., forM = 2 → M = 3 transitions there are nine possible transitions
including one atω0 within the doublet. Such transitions are not observable as such within
the present experimental accuracy at the finite temperatures.

For the case of one atom (S = 1
2) and generalM, K = 2 and we find the spectrum

which for δω = 0 coincides with that given in the [21, figure 12], while the emergence of
these peaks in the observable microwave spectrum at finite temperatures is already studied
numerically by matrix continued fraction methods in [21–24]. The result for the data which



6310 N M Bogoliubov et al

is essentially that of the experiments [17] is given in [22, figure 3], which also shows
sidebands. Note again how theK sets of solutions of the Bethe equations also determine
the g dependent level shifts and splittings. These are the origin of the various sidebands
in the observable spectrum forN = 1 andN > 1—a remarkable connection between BA
theory and experiment.

It is perhaps instructive at this point to return to the mathematics and establish contact
between the quantum inverse solution and that of the traditional ansatz (5). Following [13]
we can express [25] the amplitudesAM

S,m,σ in the ansatz through the solutions of the Bethe
equations (8):

AM
S,m,σ =

∑ ∏
j∈I

∏
k∈II

(cλσ
j − 1c − 1)(λσ

k − cS)

(
1 − c

λσ
j − λσ

k

)
.

Here summation is over all decompositions of the solutions of the Bethe equations,
{λσ } = {λσ

I } ∪ {λσ
II }, such that the intersection of the two subsets is zero and there are

M − m elements in subset I andm elements in subset II.
There is also another way to find the solutions of the Bethe equations and the

amplitudesAM
S,m,σ . We shall describe this method for the pure TC model for which

γ = 0 (c = 0). In this caseB(λ) = λa† − S+, and by expressing the|8σ
S,M〉 as

|8σ
S,M〉 = ∏M

j=1(λ
σ
j a† − S+)|�S〉 = ∑

m AM
S,m,σ (a†)M−m(S+)m|�S〉, which makes the

connection with the traditional ansatz (5) particularly transparent, we can easily conclude that
the amplitudesAM

S,m,σ are in fact the coefficients of the polynomialP(λ) = ∏M
j=1(λ

σ
j − λ),

i.e. P(λ) is the generating function of amplitudesAM
S,m,σ . By using the Bethe equations

(10), we can then prove that this polynomial satisfies an ordinary differential equation (ODE)
of second order

λP ′′ + (λ2 − 1λ − 2S)P ′ + (ζ − Mλ)P = 0 (12)

where the eigenvaluesζ = ζ σ
S,M, σ = 1, . . . , K, are determined by the condition that

(12) has only polynomial solutions without multiple zeros:P(λ) = Pσ
S,M(λ) and M

is the degree of the polynomial. The eigenenergies of the TC model are given by
ETC

S,M,σ = gζ σ
S,M(1 = g−1δω) − Sδω + ω(M − S). Note that the zeros of the polynomial

P(λ) as determined by the ODE (12) are the solutions of the Bethe equations (10). We
can conclude that in this case of the TC model the Bethe ansatz solution of the model is
equivalent to solving a homogeneous ODE. In the more general case with finitec (or γ )
the ODE (12) is replaced by a more complicated functional equation.

As an example of the use of the generating functionP(λ) we shall show how the
spectrum of the JC model (S = 1

2), EJC
M,σ = ETC

1/2,M,σ , can be derived from it. Differentiating
(12) and noting thatE0

1/2,M,σ (1, c = 0) + 1/2 = P ′(0)/P(0), we immediately find that

EJC
M,σ = ω(M − 1

2) ± ((δω/2)2 + g2M)1/2. The same result can of course be derived from
the Bethe equations (10) directly.

The solutions of the eigenvalue problems as described above determine the time
evolutions in the usual way. Thus the evolution of the collective inversion〈|Sz(t)|〉, the
photon number〈|a†a|〉 and the quantity〈|a†a†aa|〉−(〈|a†a|〉)2 can all be expressed in terms
of the amplitudesAM

S,m,σ , and all of the observable dynamics calculated. The actual forms of
the expressions are cumbersome, however, and these will be reported elsewhere. Evidently
evolution of the actual photon statistics of the cavity field can also be found completely.

We have thus been able to use the quantum inverse method to solve for all aspects of the
model system which has the Hamiltonian (1), or equivalently the Hamiltonian (3), and which
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has the TCN -atom, one-mode model lying within it. For the solutions of the TC model
the problem is also reduced to finding the zeros of the polynomialP(λ) which satisfies
a homogeneous ordinary differential equation (12). The efficiency of the method applied
here is also manifested by the fact that many other solvable models, in addition to those
considered here, can be constructed by studying the representation theory of theL operators
which satisfy the Yang–Baxter relation. Boson representations of the spin operators can, for
example, be used to produce solvable three boson Hamiltonians. One example of these is
solved in [26]. We have also generalized the Hamiltonians (1) and (3) to the case of several
cavity modes, and to the case of multiphoton transitions. At present we have a formulation
for these models at exact resonance, and we hope to report further details in this connection,
and likewise for the models (1) and (3), elsewhere.
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